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ABSTRACT
This paper describes a method to determine whether two CT vol-

umes overlap in anatomy or not. This is an important problem be-

cause radiologists have to manually select which series should be

registered together for follow-up exams. This task is becoming more

and more tedious as the number of studies and series for each pa-

tient increases in large hospital settings, and meta-data is often er-

roneous, incomplete, or inconsistent, and therefore unreliable. We

demonstrate on 40 patients and 100 possible matches that our tool is

successful in identifying the overlapping (or registrable) cases auto-

matically. We also show that this is not possible using the residual

error after registration.

Index Terms— Computed Tomography, Image Registra-

tion

1. INTRODUCTION

Since its introduction in the 1970s, computed tomography

(CT) has become an important tool in medical imaging and

the gold standard in the diagnosis of a large number of dis-

eases and conditions, including cerebrovascular accidents and

intracranial hemorrhage (cranial CT), lung disease, airspace

disease, and lung cancer (chest CT), pulmonary embolism

and aortic dissection (CT angiography), abdominal disease,

cancer staging and follow-up, renal/urinary stones, appen-

dicitis, pancreatitis, bowel obstruction (abdominal and pelvic

CT). More information can be found in [1].

Medical image registration is an important field as can

be seen from the large amount of work published in the do-

main [2, 3]. Important categories are rigid vs. non rigid, in-

tensity vs. point based, and intramodal vs. multimodal. In-

deed, clinicians are interested in registering datasets acquired

with different modalities which highlight different properties

of the tissue or organ. They are also interested in registering

datasets acquired at different times to follow up on a disease,

which is the main focus of this paper.

In the literature, it is always assumed that two volumes be-

ing examined by a registration algorithm actually do match.

Diego Fiorin is now at the University of Padova, Italy

Charles Florin is now with Siemens Medical Solutions, Malvern, PA

The goal of the algorithm is then to find the transformation

(rigid or not) between the two volumes. Nowadays how-

ever, radiologists are more and more confronted with situa-

tions where they have large databases with many studies con-

taining many series for the same patient. When a patient

comes back for a new exam, it would not make any sense for

the current liver series to be registered with a previous lung

series.

As a result, the radiologist has to manually select the

matching pairs to be sent to the registration algorithm before

the follow-up exam can proceed. This procedure can be te-

dious, especially if the number of studies and series is large. It

is important to note that meta-data entered at acquisition time

cannot be relied upon. Often, technologists do not spend time

entering the correct information, default values are stored,

or typos might be inserted accidentally. In addition, the di-

chotomy of the body might be ambiguous: a scan might be

labelled “abdomen” and go from the bottom of the lungs to

the pelvis while another scan might be labelled “liver” and go

from the bottom of the lungs to the kidneys. These two scans

overlap but their meta-data are totally different.

Fig. 1. Flowchart of the method.

The goal of this work is to develop a method to automati-

cally determine whether two volumes should be registered or

not. In particular the process should classify the pair as “over-

lapping” or “registrable” when the two scans cover (even par-

tially) the same anatomy and “non-overlapping” or “not regis-

trable” when the volumes are completely different. It should

also give some spatial indication about the matching part be-

tween the two volumes, when there is some. To this day, we
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are not aware of any work that has addressed this problem.

A direct evaluation of the registration residual (i.e.: sum of

squared differences, mutual information, ...) cannot be used

to make a decision on the registrability of the two volumes as

we will see in this paper. Even though the registration pro-

cedure aims at optimizing a matching criterion, different runs

between different pairs of volumes cannot be compared.

2. PROPOSED METHOD

The approach that we have chosen to determine if two vol-

umes are registrable is two-step. First, slices are compared

pairwise to determine how similar they are. This results in

a matrix where each entry represents a distance measure be-

tween one slice in the first volume and another slice in the

other volume. The next step is to analyze this matrix to com-

pute a distance measure between the two volumes. The pro-

posed method is summarized in the flowchart in Figure 1.

2.1. Preprocessing

The algorithm input is composed of two CT volumes. Each

scan might have some specific settings (e.g.: slice thickness

and pixel size) that depend on the target anatomy and the goal

of the exam. For instance, it is common to acquire a routine

scan with 5mm slices, while a more precise scan with 1mm

slices might be required around a pathology. Thus, the first

step in the preprocessing is to resample the volumes so that

voxels in both volumes have identical sizes. After this opera-

tion, the first volume V1 contains N1 slices {S1
1 , ...,S1

N1
} and

the second volume V2 contains N2 slices {S2
1 , ...,S2

N2
}.

Original image Thresholding Opening Filling in Connected Largest connected
dark holes components component

Fig. 2. Preprocessing on one slice to segment the body of interest from the

irrelevant background.

The next step is to detect the body outline and remove the

table and dark background. For this, we use a combination

of very simple image processing steps as illustrated in Fig-

ure 2. First, we apply Otsu’s thresholding technique [4] to

isolate structures from the dark background. Second, we ap-

ply an opening morphological operator to eliminate small and

thin objects. Third, we fill in dark holes corresponding to air

pockets in the lungs or colon. Finally, we retain the largest

connected component. This operation produces a mask area

Mv
i for the body in every slice Sv

i , i = 1, ..., Nv , v = 1, 2.

2.2. Histogram comparison

Once the slices have been preprocessed, the goal is to build a

N1 × N2 distance matrix M, so that the entry Mij contains

the distance cost between slice S1
i from volume V1 and slice

S2
j from volume V2. The first distance measure that we chose

is based on histogram comparison. There are a large num-

ber of histogram distance measures that have been published

in the literature (e.g.: intersection, Kullback-Leibler, Jef-

frey divergence, χ2, Kolmogorov-Smirnov, Bhattacharyya,

...). We eliminated the parametric measures right away since

our histograms were far from Gaussian or even unimodal.

Among the non parametric measures, we chose to use the L1

Minkowsky distance because it is not influenced by the size

or the absolute gray levels of the regions. Thus, the histogram

distance is defined as Mij =
∑K

k=1

∣
∣h1

i (k)− h2
j (k)

∣
∣ where

the histogram hv
i is built over the region of interest Mv

i of

slice Sv
i , i = 1, ..., Nv , v = 1, 2; K is the number of gray

levels in the histograms (300 in our case).

Fig. 3. Distance matrix between two identical volumes based on the

Minkowsky histogram distance.

Fig. 4. Low cost region in the similarity matrix corresponding to very

different slices having almost identical histograms.

Figure 3 shows the structure of the matrix for two identi-

cal volumes. The diagonal that corresponds to identical slices

contains the lowest costs. The region near the diagonal is a

transition region where the slices are not so different from

each other. The cells most distant from the diagonal contain

the highest costs corresponding to very different slices.

Unfortunately, the histogram distance is not always dis-

criminant enough. Figure 4 shows an example where two

very different slices have very similar histograms and the cor-

responding region in the distance matrix has low cost. In fact,

quite often, the histograms of the shoulder area and the lower

intestins/upper pelvis area are very similar. This is due to the

fact that histograms do not take into account any spatial in-

formation. For this reason, we have introduced another term

in the distance matrix based on 2D local registration and the

resulting displacement field.
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2.3. 2D registration and displacement field

The basic idea behind this component is that if two very dif-

ferent slices are registered non-rigidly, the resulting displace-

ment field should be very large. In order to eliminate the rigid

component in the displacement field, all slices are rotated to

align the main axis of the mask M with the horizontal axis

and resized to a 256 × 256 square to remove any scale and

translation bias.

To find the displacement field between two slices, we

use the algorithm proposed by Chefd’Hotel et al. [5] for

multimodal image matching. The method uses a variational

approach to optimize the cross correlation between the two

images combined with a regularization term to control the

smoothness of the deformation field. We chose to use the

median of the displacement field as the geometric distance

measure between the two slices S1
i and S2

j from volumes V1

and V2. Indeed, we found that the median was not influenced

by outliers as much as the average.

Fig. 5. Distance matrix between two identical volumes based on the dis-

placement field.

Figure 5 shows the structure of the matrix for the same

two identical volumes as in Figure 3. For two particular points

in the matrix, it shows the original slices as well as the slice

from V2 that was deformed to align to the slice from V1. The

two slices on the left are fairly similar, so both the registration

residual and the displacement field are small. The two slices

on the right are very different, but the registration residual

is small because the registration algorithm is given enough

freedom to deform one slice into the other. The displacement

field however is very large, and that is the reason why we

decide to use it as our distance measure.

2.4. Alignment using the distance matrix

The final distance matrix is generated by adding the histogram

distances to the median values of the displacement field (nor-

malized between 0 and 1). Let us now examine the struc-

ture of the distance matrix. When two volumes contain some

matching part, a low cost canal surrounded by some higher

cost area appears in the distance matrix. Some of these situ-

ations are shown in Figure 6. Since the correspondence be-

tween the two volumes is more or less a translation in the

z-direction, we model it as a straight line through the distance

matrix. We define the cost of a straight line as the sum of the

entries in the matrix along the line, averaged over the length of

the line. We perform an exhaustive search to find the straight

line with minimum cost which corresponds to the best align-

ment between the two volumes. In addition, we impose some

constraints on the position and orientation of the line. For

example, the slope of the line has to be positive since both

volumes are oriented from head to feet. Also, enough slices

should be considered, so the slope of the line cannot be too

close to 0 or to ∞. In a nutshell, the starting points for the

line can be anywhere in the first 2/3rd of either volume, while

the end points can be anywhere in the last 2/3rd.

Fig. 6. Relationship between the structure of the distance matrix and the

corresponding volumes (the best line is also shown on top of the matrix).

3. EXPERIMENTS

Our test dataset includes 40 different patients each contain-

ing two studies taken at different times. 20 of the patients

have one series in each study (2 volumes per patient) and an-

other 20 more patients have two series in each study (4 vol-

umes per patient). Since we are only interested in match-

ing datasets from the same patient, this yields 100 possible

matches. Among these 100 matches, 51 are known to be

registrable and the remaining 49 are not registrable. Note

that many of these datasets came from oncology patients and

therefore contain tumors. Their presence however did not

seem to affect the performance of our algorithm.

We applied the algorithm to all 100 possible matches and

computed the distance between the two volumes (cost of the

best straight line through the distance matrix). Figure 7(a)

shows the distributions of these distances for the 51 regis-

trable examples and the 49 non-registrable examples. The

bottom of the figure shows the box and whiskers plot rep-

resentation of the samples while the top of the figure shows

a Gaussian modelling of the two distributions. Information

about the mean and standard deviation of the distributions are

shown in Table 1(a). We chose a threshold at the intersection

of the two Gaussian distributions to classify the samples and

obtained the classification errors PFP of false positive (type

I error), PFN of false negative (type II error), and PERR of

total error as reported in Table 1(a). It can be seen that the dis-

tribution are very well separated and the classification errors

are very low.

For comparison, we also registered the 100 volume pairs

using normalized mutual information (NMI) as described

in [6] where it was established that NMI was the best entropy
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(a) (b)
Fig. 7. Distributions of the 51 registrable and 49 non-registrable volume

pairs represented by a box and whiskers plot and a Gaussian model for (a)

the distance between two volumes using our method and (b) the similarity

between two volumes using NMI registration.

(a) μ σ T = 1.16 PFP 0.53%

ω0 0.42 0.26 x < T ⇒ ω0 PFN 0.17%

ω1 2.79 0.64 x > T ⇒ ω1 PERR 0.70%

(b) μ σ T1 = 1.13 PFP 10.7%

ω0 1.22 0.05 T2 = 1.31 PFN 3.4%

ω1 1.27 0.20 T1 < x < T2 ⇒ ω0 PERR 24.1%

x < T1 ⇒ ω1

x > T2 ⇒ ω1

Table 1. Statistics on the distributions ω0 of overlapping pairs and ω1

of non-overlapping pairs, decision rules, and probability of false positives

PFP , false negatives PFN , and error PERR for (a) our method and (b)

NMI registration.

based measure to align 3D medical volumes. The distribu-

tions of the NMI values after registration for the 51 registrable

and 49 non-registrable pairs are shown in Figure 7(b). The

parameters of the Gaussian distributions, thresholds, decision

rules, and classification errors are shown in Table 1(b). It

can been seen that the two distributions completely overlap,

the classification errors are very large, and the classes can-

not be separated at all using NMI registration. This clearly

demonstrates the superiority of our method.

To evaluate the performance of our algorithm at general-

izing, we used k-fold cross validation which consists of di-

viding the samples into k groups where the samples in k − 1
groups are used for training while the samples in the remain-

ing group are used for testing. In our case, the folds were

selected around the patients so that no patient appeared in

both the training and the test set. We decided to use 10 folds,

each containing 4 patients. The error rate was estimated using

Monte Carlo sampling with 500 iterations [7]. In our prob-

lem, we want to avoid false negatives, because that would

mean missing true registrable cases and having the radiolo-

gist spend time looking for them in the database. So we did

not choose the threshold as the intersection of the two Gaus-

sians. Instead, we chose the threshold so as to minimize the

false negative rate. The results of the k-fold cross validation

experiments are shown in Table 2. It can be seen that the aver-

age error rate is just above 2% with a very low false negative

rate.

0 1 2 3 4 average

PFP - 0.6% 80.8% 18.6% - 2.180

PFN 99.4% 0.6% - - - 0.006

PERR - 0.6% 80.4% 18.8% 0.2% 2.186

Table 2. Probability of false positives PFP , false negatives PFN , and

error PERR for 500 k-fold cross validation.

4. CONCLUSION

Patient databases are getting larger and larger and the task of

exam follow-up is getting more and more tedious for the radi-

ologist who has to manually determine which series cover the

same part of the anatomy and should be registered together.

In many cases, the meta-data associated with the images can-

not be used to make this decision automatically because it

is erroneous, incomplete, or inconsistent. In this paper, we

tackle the new problem of trying to determine automatically

whether two CT scans overlap and should be registered. We

have demonstrated on a large number of patients (40) and pos-

sible matches (100) that we were able to differentiate registra-

ble and non-registrable datasets. We have also shown that this

kind of decision cannot be made using a classical registration

algorithm (such as NMI) because, even though the process

optimizes some criterion, outputs from different runs cannot

be compared.

In the future, we would like to use the output of our al-

gorithm, namely the straight line, to initialize the registration

process. This would most likely guarantee a better, faster,

and more accurate convergence of the registration optimiza-

tion process. Also, the process needs to be tested on a very

large set of examples to fully evaluate the peformance of the

system, especially for longitudinal studies with pathologies

that vary a lot with time. Finally, we would like to extend our

system to consider multi-modality problems.
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